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We consider in detail the Taylor–Couette problem for a Bingham fluid, presenting
a range of analytical and computational results. First, for co-rotating cylinders it
is known that the critical inner cylinder Reynolds number Re1,c, does not increase
monotonically with the Bingham number B , over a range of small to moderate B . It
is the only situation that we know of where a yield stress fluid flow is less stable that
the corresponding Newtonian fluid flow. This effect was discovered independently by
Landry (2003, MSc thesis) and Peng & Zhu (J. Fluid Mech. vol. 512, 2004, p. 21), but
the mechanism has not been explained. Here we show that the decrease in critical
Reynolds number is due to an increase (at small B) in the rate of strain of the basic
flow, which amplifies the transfer of energy from the basic flow to the perturbation,
via the inertial terms in the energy equation. At larger B , the yielded region contracts
and the inertial energy transfer is bounded by the yield stress dissipation.

We next consider the effects of large B . For fixed radius and Reynolds number
ratios, we show that for sufficiently large B all basic flows have an unyielded fluid layer
attached to the outer wall. For these flows we show that there is a similarity map-
ping that maps both the basic solution and the linear stability problem onto the
stability problem for an outer cylinder of radius equal to the yield surface radius.
The Reynolds and Bingham numbers of the transformed problems are smaller than
that of the original problem, as is the wavenumber k. As B → ∞, the yield surface
approaches the inner cylinder, defining a narrow gap limiting problem that differs
from the classical narrow gap limit. Via the transformed problem we derive an
energy estimate for stability: Re1,ckc ∼ B1.5 as B → ∞, which compares well with our
computed results for a stationary outer cylinder: Re1,c ∼ B1.25 and kc ∼ B0.375. We also
show how Re1,c ∼ B1.25 can be deduced from a simple order of magnitude analysis,
for a stationary outer cylinder. Finally, we consider the second (classical) narrow gap
limit in which the radius ratio η, approaches unity, for fixed B and Reynolds number
ratio. We show that Re1,c � (k2[1 + O(B)] + π2)/(1 − η)1/2 in this limit.

1. Introduction
The focus of this paper is the stability of Couette flow of a Bingham fluid. A

Bingham fluid is the simplest model of a generalized Newtonian fluid that has a yield

† Author to whom correspondence should be addressed.
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stress. This means that in regions where the shear stress lies below a critical limit the
fluid behaves as an inelastic rigid solid. Such fluids were first considered by Bingham
(1922), after whom the most commonly used model is named. Later, these fluids were
studied more extensively by Oldroyd (1947), Prager (1954), Mossolov & Miasnikov
(1965, 1966) and Duvaut & Lions (1976). Slightly more complex visco-plastic models
are the Herschel–Bulkley and Casson models. These fluids occur both naturally and
industrially, although often a visco-plastic model is an idealization of a more complex
rheological (and/or thermophysical) behaviour. A range of different materials and a
description of many of the known solutions to the Navier–Stokes equations is given
by Bird, Dai & Yarusso (1983).

Suppose that we fill the gap between two coaxial cylinders with a yield stress fluid
and slowly increase the torque on the inner cylinder. As the stress at the inner cylinder
wall exceeds the yield stress of the fluid, the cylinders begin to rotate (see § 2.1). The
fluid is yielded only in a thin layer next to the inner cylinder, while the outer part
of the annulus remains undeformed and static. This is the basic Couette flow pattern
for a yield stress fluid, see e.g. Bird et al. (1983). As the torque increases further, the
yielded region grows outwards and eventually occupies the entire gap. Experience with
Newtonian fluids, and knowledge of yield stress fluids in laboratory and industrial
settings, suggests that this flow will lose its stability at a high enough rotation rate
(or torque). A study of these flow instabilities is the subject of this paper.

Although our study is fundamental in nature, there are a number of practical appli-
cations in which shear-thinning and yield stress fluids flow between rotating cylinders.
First, this is a key geometry for rotational rheometry and accurate rheological mea-
surements using cylinders are obviously limited to shear rates below the Taylor-vortex
limit. Secondly, rotational shear is used to thin axially flowing foodstuffs. For example,
Fitt & Please (2001) consider a rotating heat exchanger between rotating cylinders.
Thirdly, in paper making, fibres are fractionated in pressure screens in which the
suspension flows axially in the annular space between an inner rotating cylinder and
an outer porous wall. Lastly, in the drilling of oil wells the drill bit is attached to an
inner cylinder, the drillstring, that rotates rapidly in the drilled hole. Here the onset
of vortical structures is important because of two effects. First, in laminar wellbore
hydraulic flows many authors have attempted to provide frictional pressure closures
for different rheological models; e.g. Hansen et al. (1999), Bailey & Peden (2000),
Diaz et al. (2004). In the case of slimhole drilling, where the annulus is relatively
narrow, frictional pressure losses can account for 50–90 % of total pressure losses,
and accurate prediction of the frictional pressure becomes very important for well
planning. It has been observed that increasing rotation, at a constant axial flow rate,
can both increase and decrease the frictional pressure losses (see McCann et al. 1993;
Wang et al. 2000). This complex picture is partly attributable to the onset of vortical
flow, which acts to shear-thin the drilling fluids. The second effect concerns the effects
on cuttings transport (see e.g. Lockett, Richardson & Worraker 1993; Loureiro,
Souza Mendes & Azevedo 2006). Attempts to study the onset of Taylor vortices in
the oilfield context, for inelastic shear-thinning fluids, have been made by Lockett
et al. (1992) and Coronado-Matutti, Souza Mendes & Carvalho (2004). In these
papers, CFD codes are used to simulate the transient flow, and a numerical criterion
is used to indicate transition, i.e. methodologically these are attempts to simulate
a transition experiment, rather than direct studies of the hydrodynamic stability
problem.

Taylor–Couette paradigm instabilities have been widely studied for Newtonian
fluids. The reader may refer to Drazin & Reid (1981) and Drazin (2002) for an
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overview, or to either one of the texts Koschmeider (1993) and Chossat & Iooss (1994)
or papers by Di Prima & Swinney (1981), Andereck, Liu & Swinney (1986) and Tagg
(1994) for detailed descriptions of the literature. There have also been a number
of studies of the onset of Taylor vortices for non-Newtonian fluids. Principally these
have concerned visco-elastic fluids, e.g. Larsen (1989, 1992), Muller, Larson & Shaqfeh
(1989), Larson, Shaqfeh & Muller (1990), Joo & Shaqfeh (1992), Avgousti & Beris
(1993), Muller et al. (1993), Joo & Shaqfeh (1994), Khayat (1995, 1997, 1999) Shaqfeh
(1996), Al-Mubaiyedh, Sureshkumar & Khomami (2000), which are not of direct
relevance here.

Yield stress fluids fall into the broad category of generalized Newtonian fluids.
Certainly, Taylor vortices do occur in such fluids. This is evidenced by the numerical
experiments of Lockett et al. (1992) and Coronado-Matutti, Souza Mendes &
Carvalho (2004), by phenomenological evidence from applications such as oil well
drilling (i.e. observed changes in frictional pressure), and also by direct experimental
study. Nouar, Devienne & Lebouche (1987) and Naimi, Devienne & Lebouche (1990)
have studied axial flow through an annulus with rotating inner cylinder, using CMC
and Carbopol solutions, respectively. The former behaves as a power-law fluid and
the latter has a yield stress, as well as shear-thinning behaviour. In both cases only
axisymmetric Taylor vortices are reported, with their appearance retarded by the
presence of an axial flow. Naimi et al. (1990) reports that the yield stress appears
to stabilize the flow. The focus of the two studies is on heat transfer rather than
hydrodynamic stability.

Considering specifically the study of Taylor–Couette hydrodynamic instabilities, for
visco-plastic fluid flows, the most detailed studies are by Graebel (1964), Peng & Zhu
(2004) and Landry (2003), (which we partly follow here). We should also mention
a few shorter communications of numerical results that have appeared in various
conference proceedings, Nsom & Mangel (2001), Coronado et al. (2002) and Lockett
et al. (1993). Graebel (1964) was the first hydrodynamic linear stability study of a
visco-plastic fluid flow, and it is unfortunate that this paper has remained hidden
in conference proceedings for so long. The paper is largely analytical and considers
axisymmetric linear disturbances. After correctly deriving the linearized stability
equations and boundary conditions for the perturbed yield surface, Graebel proceeds
to a narrow gap approximation of the classical type, which eventually allows analytical
solutions using a truncated normal mode series, i.e. this is an extension of the classical
methods for the Newtonian fluid, see e.g. Taylor (1923) and Chandrasekhar (1961).
Graebel concludes that the Bingham fluid is more stable than the corresponding yield
stress fluid.

This statement apparently contradicts results found independently by Landry (2003)
and by Peng & Zhu (2004). Reduction of the critical Reynolds number with yield
stress in wide gap co-rotating cylinders over a limited range of Bingham numbers
was first reported by Landry (2003). The Bingham number denotes the ratio of
yield stress to viscous stress, and hence we have the interesting observation that a
positive yield stress may in fact be destabilizing. The focus of Peng & Zhu (2004) is
a numerical study of instabilities of spiral Couette flow of a Bingham fluid and the
majority of their paper concerns the spiral flow. In a short section of their paper, the
Taylor–Couette case is also considered (i.e. where the inner cylinder does not slide).
For co-rotating cylinders and at small radius ratios (meaning away from the narrow
gap limit), Peng & Zhu also show that the critical Reynolds number first decreases
and then increases with Hedström number, He (defined as He = τ̂y ρ̂d̂2/µ̂2

p), i.e. again
the yield stress may destabilize.



324 M. P. Landry, I. A. Frigaard and D. M. Martinez

In the context of the above results, a number of pieces of the puzzle are missing, and
it is a goal of this paper to provide them. First of all, what is the physical/mathematical
explanation for the decrease in critical Reynolds number? Secondly, how is it that
Graebel (1964) predicts increasing stability with the yield stress (also in the case of
co-rotating cylinders), whereas Landry (2003) and Peng & Zhu (2004) do not, i.e.
is there a contradiction, or are these simply different results? Thirdly, it is apparent
that as the yield stress increases (with all other parameters fixed), there will be a
progressively thick unyielded layer of fluid attached to the outside wall. This results
in a narrow gap of yielded fluid, in which the stability problem is posed. How does
this narrow gap limit differ from that studied by Graebel (1964), or is it equivalent?

Apart from the above objectives, we comment that there has been practically no
theoretical study of these flows for yield stress fluids. In the case of Newtonian fluids,
such studies have led to simple heuristic rules and scaling laws that, although not
always exact, often offer physical insight and practical utility, e.g. Rayleigh’s criterion.
As far as possible, we attempt to derive such results and explore other theoretical
aspects of the stability problem.

An outline of our paper is as follows. We start by introducing the dimensionless
equations and the basic flow. We present in § 2.1 a clear representation in the
(Re2, Re1)-plane of the various transitions in the basic flow, between rigid rotations
and flows with partial or no unyielded plug attached to the outer cylinder. We have
found this representation helpful in developing our understanding. Section 3 develops
the linear stability equations, and we focus solely on axisymmetric disturbances. A
number of marginal stability results are presented in § 4. In § 4.1, we explain the origin
of the non-monotonicity of the critical Reynolds number Re1,c, with the Bingham
number. Section 5 considers the case of rigid rotations, proving that the flows are
linearly stable for all B > 0. We also develop an extended Rayleigh criterion. In § 6,
we look at flows with an unyielded plug on the outer wall. As the Bingham number
B → ∞, these flows occupy the entire (Re2, Re1)-plane. We show that there is a
similarity mapping of both the basic flow and stability problem onto an equivalent
problem on an annulus with smaller outer cylinder. We also investigate the limit
B → ∞, producing asymptotic estimates for Re1,c. We compare these against computed
results for the case of stationary inner cylinder. In the final section, § 7, we consider
the second narrow gap limit, namely that considered by Graebel (1964), in which
η → 1 at fixed B . The paper concludes with a short summary.

2. Problem formulation
We consider the flow between two infinitely long concentric cylinders with inner

and outer radii, R̂1 and R̂2, that rotate independently with angular speeds Ω̂1 (inner)
and Ω̂2 (outer). By convention, we take Ω̂1 > 0. The scaled Navier-Stokes equations
are:

ut + Re1(u · ∇)u = −∇p + ∇ · τ , (2.1)

∇ · u = 0, (2.2)

where u is the velocity, p the pressure, τ the deviatoric stress tensor, and Re1 is the
inner cylinder Reynolds number:

Re1 =
ρ̂R̂1Ω̂1d̂

µ̂p

. (2.3)
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To scale these equations we have followed Chossat & Iooss (1994), with the aim of
maintaining some compatibility of our notation with the various Newtonian results.
Lengths have been scaled with the annular gap, d̂ = R̂2 −R̂1. Velocities are scaled with
Ω̂1R̂1. The pressure and deviatoric stress are scaled with µ̂pR̂1Ω̂1/d̂ . Time is scaled
with ρ̂d̂2/(µ̂p). Here, ρ̂ and µ̂p are the density and plastic viscosity, respectively.†

The constitutive laws describing the deformation of a Bingham fluid are:

τij =

(
1 +

B

γ̇

)
γ̇ij ⇐⇒ τ > B, (2.4)

γ̇ = 0 ⇐⇒ τ � B, (2.5)

where γ̇ and τ are the second invariants of the rate of strain and deviatoric stress
tensors, γ̇ = γ̇ij and τ = τij , respectively. The Bingham number B above is defined as:

B =
τ̂y d̂

µ̂pR̂1Ω̂1

(2.6)

which represents a ratio of yield stress to viscous stress. Two further dimensionless
groups will be used: the outer cylinder Reynolds number Re2, and the radius ratio η:

Re2 =
ρ̂R̂2Ω̂2d̂

µ̂p

, η =
R̂1

R̂2

. (2.7)

To use He or B?

We follow Landry (2003) in representing yield stress effects via B , rather than
He = BRe1, as is done by Peng & Zhu (2004). In terms of the stability problem, both
are evidently equivalent. Our choice of B is motivated by the basic Couette flows,
which we show depend solely on B , η and Re2/Re1, and the simple representation
of their change of type in the (Re2, Re1)-plane, which is the usual plane for plotting
marginal stability results. This is explained in § 2.1.

Secondly, in using He, large values of He can correspond to modest values of B ,
(and hence relatively small qualitative changes in the basic flows), when exploring
questions of stability since the Reynolds numbers are typically large. Thus, in Peng &
Zhu (2004) we see relatively little perturbation from the Newtonian marginal stability
results for large He, whereas later we explore the stability of a much fuller range of
basic flows.

The interpretation of He, being the product BRe1, is as the ratio of the product
of inertial and yield stresses to the square of the viscous stresses, which is perhaps
slightly obscure. The often cited advantage of He over B is that He depends only on
fluid properties (incorrect as the geometry d̂ also enters), whereas B depends on the
process variables (i.e. velocity scale). In the end it is a matter of personal choice.

2.1. Basic flow

Below we consider the classical problem of linear stability, by perturbing a steady
basic flow U . It is well known that the configuration described admits a Couette
velocity solution, U = (0, V (r), 0), in directions (r, θ, z) (see e.g. Bird et al. 1983). To

† The plastic viscosity represents the limiting viscosity of the fluid at infinite shear rate. In
the absence of the yield stress it would correspond to the Newtonian viscosity. An incorrect
interpretation often given in texts is that µ̂p represents the constant viscosity of the fluid when
yielded. Such interpretations are only loosely valid for simple one-dimensional shear flows. In
multi-dimensional flows these fluids have a non-constant nonlinear viscosity when yielded.
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derive V (r) we integrate the θ-momentum equation:

0 =
1

r2

∂

∂r
[r2τrθ ], (2.8)

over r ∈ [η/(1−η), 1/(1−η)] using the simplified constitutive laws for the shear flow:

τrθ =

(
1 +

B

|γ̇rθ |

)
γ̇rθ ⇐⇒ |τrθ | > B, (2.9)

|γ̇rθ | = 0 ⇐⇒ |τrθ | � B, (2.10)

γ̇rθ =
dV

dr
− V

r
= r

d

dr

[
V

r

]
. (2.11)

Equation (2.8) is effectively a second-order differential equation for V (r) and
consequently two boundary conditions are required. From the velocity scaling, these
must be

V (η/(1 − η)) = 1, (2.12)

V (1/(1 − η)) =
Re2

Re1

. (2.13)

Thus, we see that V (r) can be parameterized uniquely by B , η and Re2/Re1.

2.1.1. Representation of V (r) in the (Re2, Re1)-plane

If we solve the system (2.8), (2.12) and (2.13), we find that the solutions are
qualitatively of three types: (i) the cylinders may co-rotate at the same angular
velocity, with the fluid fully unyielded in the annular gap; (ii) there may be a layer
of unyielded fluid attached to the outer wall, together with a layer of yielded fluid at
the inner wall; (iii) the fluid may be fully yielded throughout the annular gap.

Later we examine stability of the basic flow and present our results in the
(Re2, Re1)-plane, as is conventional. It is convenient therefore to understand where
the above three types of solution occur in the (Re2, Re1)-plane. It is therefore helpful
to momentarily work with a stress boundary condition, rather than the velocity
boundary conditions. We denote the inner wall shear stress as:

τrθ (η/(1 − η)) = τi. (2.14)

Since V (r) is parameterized uniquely by B , η and Re1/Re2, we can write that τi =
τi(B, η, Re1/Re2). To determine this relationship, we relax (2.12), find the solution
corresponding to the two conditions (2.13) and (2.14), and then find τi such that
(2.12) is satisfied. The advantage for this, admittedly roundabout route to V (r), is a
simple characterization of the basic flow types. From (2.8) and (2.14):

τrθ =
τiη

2

r2(1 − η)2
. (2.15)

Therefore τrθ does not change sign in the annulus and |τrθ | decreases with r .
Consequently, if there is an unyielded plug region in the annulus, it must be bounded
inside by a yield surface, say at r = Ry , and must extend to the outside wall. The
position Ry is defined where |τrθ | =B:

Ry =
η

1 − η

√
|τi |
B

. (2.16)
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The solution V (r) is characterized in terms of τi as follows:

I. Solid body rotation
|τi |
B

� 1,

II. Partial plug 1 <
|τi |
B

�

(
1

η

)2

,

III. No plug

(
1

η

)2

<
|τi |
B

.

Denoting Ro = min{Ry, 1/(1 − η)}, the velocity V (r) is found to be:

V (r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Re2(1 − η)

Re1

r +
τiη

2r

2(1 − η)2

(
1

R2
o

− 1

r2

)
+ Br ln

(
Ro

r

)
sgn(τi),

η/(1 − η) � r � Ro,
Re2(1 − η)

Re1

r, Ro � r � 1/(1 − η).

(2.17)

For given B, η and Re2/Re1, it remains to find τi . By imposing (2.12), for cases II
or III, we must solve:

1 =
Re2

Re1

η +
τiη

2(1 − η)

(
η2

R2
o(1 − η)2

− 1

)
+

Bη

1 − η
ln

(
Ro(1 − η)

η

)
sgn(τi),

which can be done either numerically (case II) or analytically (case III).
In the (Re2, Re1)-plane, for fixed (B, η), the velocity regimes of the basic flow are

delineated by rays emanating from (0, 0). For case I, imposing (2.12) implies that

Re2

Re1

=
1

η
. (2.18)

The boundaries between cases II and III are found when the stress at the outer wall
reaches the yield stress, given by, i.e. τi = ±B/η2. Denoting f (η) by:

f (η) =
1 + η

2η2
− ln(1/η)

1 − η
,

we find that these boundaries are defined by

Re2

Re1

=
1

η
± Bf (η). (2.19)

An example is shown in figure 1(a). Observe that f (η) > 0. For small B , the partial
plug regions are close to the rigid rotation line, Re2/Re1 = 1/η, but as B increases
the two lines (2.19) fan out to incorporate an increasing proportion of the (Re2, Re1)-
plane. Figure 1(b) illustrates the basic velocity V (r) at a fixed Re1 = 200, as Re2 is
increased through the different solution regimes. For Re2 = 0, 500 there is a partial
plug at the outer wall. This is indicated by a region within which V (r) ∝ r , and is most
visible when Re2 = 0, since then V (r) = 0 in the plug. The same qualitative picture is
found for other η ∈ (0, 1) and B > 0.

3. Linear perturbation equations
We now consider the perturbation of our basic flow (U, P ):

U = (0, V (r), 0), P (r) = Re1

∫ r V 2(r̃)

r̃
dr̃ + constant,
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Figure 1. Examples of the basic flow at η =0.75, B =10: (a) flow regimes in the
(Re2,Re1)-plane; (b) velocity profiles V (r) at Re1 = 200, Re2 = −2000, 0, 500, 1500.

by a small disturbance

εu′ = (εu′(r, θ, z, t), εv′(r, θ, z, t), εw′(r, θ, z, t)), εp′(r, θ, z, t),

where ε 
 1. We straightforwardly derive the following linearized system of equations,
valid in the yielded parts of the flow:

0 =
∂u′

∂r
+

u′

r
+

1

r

∂v′

∂θ
+

∂w′

∂z
, (3.1)

∂u′

∂t
= −Re1

V

r

(
∂u′

∂θ
− 2v′

)
− ∂p′

∂r
+ ∇2u′ − 2

r2

∂v′

∂θ
− u′

r2

+ B

[
1

r

∂

∂r

(
rγ̇rr (u′)

γ̇ (U)

)
+

1

γ̇ (U)

(
∂

∂z
γ̇rz(u′) − γ̇θθ (u′)

r

)]
, (3.2)

∂v′

∂t
= −Re1

(
u′D∗V +

V

r

∂v′

∂θ

)
− 1

r

∂p′

∂θ
+ ∇2v′ +

2

r2

∂u′

∂θ
− v′

r2

+
B

γ̇ (U)

[
1

r

∂

∂θ
γ̇θθ (u′) +

∂

∂z
γ̇θz(u′)

]
, (3.3)

∂w′

∂t
= −Re1

V

r

∂w′

∂θ
− ∂p′

∂z
+ ∇2w′

+ B

[
1

r

∂

∂r

(
r
γ̇zr (u′)

γ̇ (U)

)
+

1

γ̇ (U)

(
1

r

∂

∂θ
γ̇zθ (u′) +

∂

∂z
γ̇zz(u′)

)]
, (3.4)

where

D =
d

dr
, D∗ =

d

dr
+

1

r
,

and γ̇ = γ̇ (U). The latter is evaluated from the basic flow and the constitutive laws,
which give:

γ̇ (U) = |γ̇rθ | =
|τi |η2

(1 − η)2r2
− B. (3.5)
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3.1. Boundary conditions

If we set B = 0 in (3.1)–(3.4), we recover the Newtonian stability problem, for which
appropriate boundary conditions are:

u′ = 0 at r = η/(1 − η), (3.6)

u′ = 0 at r = 1/(1 − η). (3.7)

If B > 0, we must consider the type of basic flow. For a case III basic solution, the
flow is yielded everywhere and the boundary conditions are (3.6) and (3.7).

For a case II basic solution, we have a partial plug in the annulus, for r ∈ [Ry, 1/

(1 − η)]. The perturbation (εu′, εp) is augmented with a linear perturbation of the
yield surface, i.e. Ry → Ry + εry(θ, z, t). Implicit here is the assumption of a linear
perturbation of the deviatoric stress. The linearization leading to (3.1)–(3.4) is then
carried out only in the perturbed yielded region, r ∈ [η/(1 − η), Ry + εry], which is
linearized onto the yielded region of the basic flow r ∈ [η/(1 − η), Ry]. The boundary
condition (3.6) is evidently applicable at the inner cylinder. At the outer cylinder, (3.7)
is also satisfied. However, the linear stability problem is now posed on r ∈ [η/(1 −
η), Ry].

At the yield surface, both velocity and stress (i.e. traction) vectors are continuous.
We linearize these conditions both with respect to the perturbations (εu′, εp′) and
onto Ry . The method is explained in more detail in Frigaard, Howison & Sobey
(1994). To transfer the conditions at the outer cylinder to those at r =Ry , we observe
that for r ∈ [Ry + εry, 1/(1 − η)], we have that γ̇ (U + εu′) = 0. Thus, γ̇ (u′) = 0 and we
readily find that:

u′ = 0 at r = Ry. (3.8)

Whereas (3.8) is the correct boundary condition at r = Ry , a number of additional
conditions also arise from continuity of stress at the perturbed yield surface:

γ̇rr (u′) = γ̇θθ (u′) = γ̇zz(u′) = 0 at r = Ry, (3.9)

γ̇rz(u′) = γ̇zθ (u′) = 0 at r = Ry, (3.10)

γ̇rθ (u′) =
2ryBsgn(τi)

Ry

at r = Ry. (3.11)

These conditions are not strictly boundary conditions. Instead, (3.9) and (3.10) are
compatibility conditions. Observe that each γ̇ij (u′) in (3.9) and (3.10) also appears in
the Bingham terms in (3.2)–(3.4), divided by γ̇ (U). Conditions (3.9) and (3.10) are
therefore necessary conditions for the linear stability equations to be well-defined as
r → R−

y (as we expect from a physical standpoint). We observe that γ̇rθ (u′) does not
appear among the Bingham terms in (3.2)–(3.4). Condition (3.11) is therefore not
required for compatibility, but instead defines the perturbation of the yield surface,
Ry , from the perturbed solution. Note that the yield surface is not a material surface
or interface, so there is no kinematic condition.

Lastly, we note that for a case I basic flow, there is no yielded region and no
linear stability problem. Apart from the critical case where |τi | =B (and then only at
r = η/(1 − η)), the shear stress is everywhere below the yield stress by a finite amount.
We have assumed only a linear perturbation of the deviatoric stress everywhere, and
therefore the finite plug that fills the annulus cannot be perturbed by an infinitesimal
perturbation.
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3.2. Axisymmetric disturbances

From here onwards we consider axisymmetric disturbances only. For Newtonian
fluids these are the least stable modes except for strongly counter-rotating cylinders.
For generalized Newtonian fluids, only axisymmetric vortices were reported in the
experimental studies of Nouar et al. (1987) and Naimi et al. (1990). Also in some
preliminary experiments we have carried out at UBC, we have only seen axisymmetric
vortices. However, in all these experiments the outer cylinder is fixed, so spiral flows
are not expected anyway.

Mathematically, we have no rigorous justification of axisymmetry for all B and all
(Re2, Re1). If we derive a linear energy equation, inclusion of the azimuthal derivatives
contributes directly to the destabilizing inertial term only in terms of the phase speed
of a linear disturbance and not the growth rate. In the viscous term, the azimuthal
derivatives simply increase the dissipation rate. However, analogous observations hold
true for all generalized Newtonian fluids. In the limit B → 0, following the methods in
Duvaut & Lions (1976), it is often possible to prove continuity of the Bingham fluid
solution in this Newtonian limit. This being the case, we would expect that azimuthal
instabilities are the least stable, at low B , for co-rotating and weakly counter-rotating
cylinders.

We proceed in the usual fashion, assuming a normal mode expansion of the
perturbation, of the form:

(u′, v′, w′, p′) ∼ (u(r), v(r), w(r), p(r)) eλt+ikz, (3.12)

and ry =h eλt+ikz when we have a case II basic flow. Substituting into (3.1)–(3.4):

D∗u + ikw = 0, (3.13)

(DD∗ − k2 − λ)u = −2Re1

(
V

r

)
v + Dp − Bφr, (3.14)

(DD∗ − k2 − λ)v = Re1(D∗V )u + k2B
v

γ̇ (U)
, (3.15)

(D∗D − k2 − λ)w = ikp − Bφz, (3.16)

where

φr =
1

r
D

(
2rDu

γ̇ (U)

)
+

1

γ̇ (U)

(
ikDw − k2u − 2u

r2

)
, (3.17)

φz =
1

r
D

(
r(iku + Dw)

γ̇ (U)

)
− 2k2w

γ̇ (U)
. (3.18)

Using (3.13) to eliminate w and then (3.16) to eliminate p results in a fourth-order
eigenvalue problem for u, coupled to a second-order eigenvalue problem for v. Writing
x = (u, v), our eigenvalue system becomes

Ax = λBx, (3.19)

where

A = AV + Re1AI + BAY , (3.20)

respectively denoting the viscous, inertial and yield stress parts of A. These operators
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Figure 2. Marginal stability curve for a Newtonian fluid: η = 0.883. Comparison ×, of finite
difference method results, N = 50, �, Chebychev expansion results, N = 50, and �, those
computed by R. Tagg.

are defined by

AV =

(
(DD∗ − k2)2 0

0 k2 − DD∗

)
, AI =

⎛
⎝ 0 −2k2

(
V

r

)

D∗V 0

⎞
⎠ ,

AY =

⎛
⎝LY 0

0
k2

γ̇ (U)

⎞
⎠ , B =

(
DD∗ − k2 0

0 −1

)
,

where

LY u = −k2φr − ikDφz = (DD∗ − k2)

[
DD∗ − k2

γ̇ (U)

]
u. (3.21)

The boundary conditions are:

u = Du = v = 0 at r = η/(1 − η), (3.22)

u = Du = v = 0 at r = Ro, (3.23)

see our previous discussion. For case II basic flows, the normal mode forms of the
compatibility conditions (3.9)–(3.10) are also satisfied, and (3.11) defines the modal
amplitude of the yield surface perturbation.

Note that the block structure of the Newtonian operator AV + AI is preserved
when the yield stress terms are added, and that LY is real. It should also be noted
that fourth-order derivatives appear in the operator LY .

3.3. Computational method and validation

We have solved the system (3.19) numerically, using both finite-difference methods
and a Chebyshev discretization (essentially as described in Schmid & Henningson
2001). For fixed (Re1, Re2, k), we solve for the eigenvalues and eigenfunctions of (3.19),
and take the eigenvalue with maximal real part, λR,max(k). At each (Re1, Re2) pair, an
inner iteration then computes the wavenumber kmax, for which λR,max is largest. For
the outer iteration, in general we fix Re2 and increase Re1 until λR,max =0 is found,
using a bisection method.

The results are quite similar using both discretization methods and acceptable
convergence is found for N ≈ 30 (here N denotes the number of Chebyshev
polynomials in our approximation). In figure 2 and table 1, we show a comparison
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Re2 = 0 −5 −10 −25 −50 −100

FD 121.7749 121.5845 121.6138 123.0273 129.2676 151.3940
CP 121.9805 121.7822 121.8188 123.2324 129.4653 151.6064
Tagg 121.9791 121.7868 121.8205 123.2306 129.4683 151.6083

Table 1. Values of critical Re1 computed via the finite-difference method (FD), and Cheby-
chev expansion (CP), compared with results from R. Tagg. Parameters: η = 0.883, N = 50.

against numerical values supplied by R. Tagg for the corresponding Newtonian fluid
problem, B =0. It can be seen that the results are very close. For the remaining
results in the paper, we have used the Chebyshev expansion with N = 50 points
(unless otherwise stated). The matrices involved in the Chebyshev expansion are
smaller than the finite-difference method and hence computation is quicker.

4. Marginal stability
Sample marginal stability curves for increasing values of B are shown in figure 3,

at η = 0.883. We also plot the domain boundaries that separate type I, II and
III base solutions. We observe that for this radius ratio, the critical Re1 increases
monotonically with B . All curves lie above the rigid rotation line Re1 = ηRe2. Linear
instability is predicted both when the annulus is fully yielded (case III) and when
there exists an unyielded plug on the outer wall (case II). The transition is smooth
along the marginal stability curve, between case III and case II base solutions. We
might expect there to be some form of discontinuity in the marginal curve as it crosses
the boundary between case III and case II, since the case II stability problem has the
additional boundary constraints (3.9) and (3.10) imposed at the yield surface (which
is the outer boundary). As explained earlier, these additional constraints arise only
because AY becomes singular at the yield surface, and simply act to ensure that AY x
is non-singular.

Figure 4 shows marginal stability curves for a wider range of parameters. For
counter-rotating cylinders the results are qualitatively similar to those for the case
η = 0.833. However, as the gap is widened we see an interesting effect for co-rotating
cylinders. Over a range of B , at fixed Re2, it would appear that increasing B decreases
the critical Reynolds number. For large enough B , the critical Reynolds number
increases. This effect is more pronounced at smaller η (radius ratio).

The features most evident in figures 3 and 4 are as follows. (i) For counter-rotating
cylinders, the stability is enhanced by increasing B . (ii) The minimal critical values of
Re1 are found for slightly counter-rotating cylinders. (iii) For co-rotating cylinders,
different behaviours are observed for small and large η. In the narrow gap case,
η ≈ 1, it appears that increasing B is purely stabilizing. For wider gaps the stability is
non-monotone.

In figure 5, we show some examples of the spectra and variation of λR,max(k), at
two different points on the marginal stability curve for η = 0.75, B = 5; see figure 4(c).
For those values that we have computed, the eigenvalue with the largest real part is
real, although there are also a few complex eigenvalues.

4.1. Non-monotonicity

Probably the most interesting feature of the results is the non-monotonicity of
the critical Reynolds number Re1, for co-rotating cylinders as B is increased. This
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Figure 3. Marginal stability curves and basic flow types for various B: η = 0.883, N = 50.
(a) B = 1; (b) B =5; (c) B = 10; (d) B = 15; (e) B = 20; (f ) All curves overlayed, plus
Newtonian B = 0.

surprising behaviour is most observable in a wide gap cylinder, (small η) and is the
only visco-plastic flow that we know of, for which increasing B apparently destabilizes
the flow. Figure 6 plots the variation in Re1,crit with B , for η = 0.5, 0.6. We can see
that the effect is very significant for Re2 > 100, and occurs over moderate ranges of
B , e.g. 0 <B � 1. Although this effect has been reported in Peng & Zhu (2004), it has
not been explained, i.e. physically how is it that an increase in B can lead to a less
stable flow? First, we note from figure 6 that there is no apparent relation with the
change in the type of base solution as B increases.
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On multiplying (3.14)–(3.16) by r times the complex conjugate, ū =(ū, v̄, w̄), then
integrating from R1 = η/(1 − η) to Ro, we derive the linear energy equality:

λ‖u‖2 = Re1JI − JV − BJY , (4.1)

where JI , JV and JY , denote inertial, viscous and yield stress contributions to the
kinetic energy growth of the perturbations. These are defined by:

‖u‖2 =

∫ Ro

R1

r(|u|2 + |v|2 + |w|2) dr, (4.2)

JI =

∫ Ro

R1

(
2V vū − r

(
DV +

V

r

)
v̄u

)
dr, (4.3)

JV =

∫ Ro

R1

(
r |Du|2 + k2r |u|2 +

|u|2 + |v|2
r

)
dr, (4.4)

JY =

∫ Ro

R1

1

γ̇

(
2

(
r |Du|2 +

|u|2
r

)
+ rk2(|v|2 + 2|w|2) + r |ku − iDw|2

)
dr. (4.5)

Note that both JV and JY are real and positive, representing dissipation. Only the
real part of JI , say JI,R , contributes to λR , and can cause instability. In the case
where we are above the rigid rotation line (τi < 0), and if the critical eigenvalues and
eigenfunctions are real (which we have found to be the case for co-rotating cylinders),
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we have

JI = JR,I =

∫ Ro

R1

−r

(
DV − V

r

)
(vRuR + vIuI ) dr =

∫ Ro

R1

rγ̇ (r)vRuR dr. (4.6)

By definition, marginal stability comprises a balance between the dissipative terms
JV + BJY and the inertial term Re1JI . The fact that the critical Re1 decreases with B
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over some range implies precisely that

Re1,c =
JV + BJY

JI,R

, (4.7)

decreases with B over some range, (when the functionals are evaluated with the
marginal eigenfunctions). The functionals JV , JI,R and JY are characterized as follows:

(i) JV depends only on the eigenfunctions, whereas both JI,R and JY depend upon
the eigenfunctions and the rate of strain of the basic flow, γ̇ (r).

(ii) JI,R increases with γ̇ (r) whereas JY decreases with γ̇ (r).
(iii) JV and JY contain quadratic products of the eigenfunctions and their first

derivatives, whereas JI,R contains only the product uv.
Obviously, increase of Re1,c(B) in (4.7) has to be due to changes with B , in either

γ̇ (r) or the eigenfunctions. Since the problem is linear, we may scale one of the
eigenfunctions, and here we choose to normalize the eigenfunctions so that the L2

norm of uR(r) is equal to 1. If now we have an increase in the size of |vR| with B ,
we see that JV and JY will increase quadratically, whereas JI,R increases only linearly.
Conversely, if |vR| decreases with B , the normalized uR(r) dominates. Consequently,
it appears that changes in the eigenfunctions with B cannot be responsible for the
increase of Re1,c(B), and the effect has to be due to the rate of strain.

Let us examine the eigenfunctions, and how they combine in the inertial integral
JI,R . We follow the marginal stability curve for Re2 = 500, η =0.5 and increasing B .
The critical values of Re1, as B increases, are shown in figure 6(a). In figure 7(a, b)
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we plot the (real) eigenfunctions uR(r) and vR(r), as we traverse this curve increasing
B . In figure 7(c, d) we plot the product uR(r)vR(r), and the integrand of JI,R , i.e.
uR(r)vR(r)γ̇ (r).

The main features are as follows. First, only for small values, 0 � B � 1, do we have
a type III basic solution: fully yielded fluid filling the annular gap. As B increases,
we see that the critical eigenfunctions are non-zero only in a progressively small
yielded layer of width (Ro − R1). By virtue of the normalization we expect that,
uR(r) ∼ O([Ro − R1]

−1/2), which increases relatively slowly with B as the yielded gap
closes. These effects appear well represented in figure 7(a). A more significant effect
is seen in figure 7(b), where the azimuthal velocity vR appears to increase rapidly
with B (i.e. much more so than uR(r)). The product uR(r)vR(r) therefore also grows
with B . However, as discussed, this in itself is not necessarily destabilizing. Examining
carefully figure 7(d), we see that multiplication by γ̇ (r) in fact amplifies the differences
between the curves in figure 7(c). This implies that γ̇ (r) increases with B in the yielded
part of the annulus. Note that γ̇ (r) multiplies the inertial terms in JI,R , but divides
the dissipative terms in JY . Therefore, this is the source of destabilization.

To confirm this, figure 8(a) plots the maximal value of γ̇ (r), (always found at the
inner cylinder), against B for a range of ratios, Re2/Re1, that lie above the rigid
rotation line, Re2/Re1 = 1/η, i.e. covering the domain where the marginal curves lie.
We see that γ̇max generally increases with B . For a range of B close to zero, we
have γ̇max ∼ Bν . As B increases, for |τi | ∼ B we can derive asymptotically that ν ∼ 1/2,
whereas further from the rigid rotation line it appears that the growth exponent ν ∼ 1,
for small B . At larger B , the rate of increase is certainly less than linear. We therefore
assume the estimate 0.5 <ν < 1, and consider the ratios JV /JI,R and JY /JI,R for small
B . Supposing that γ̇ ∼ γ̇max, and that the width of the yielded part of the annulus
remains constant (a case III solution), then (4.7) implies that

Re1,c ∼ B−ν + B1−2ν, (4.8)

which decreases. This effect may be modulated by changes in the eigenfunctions with
B , as we have discussed.

As B increases, the width of yielded fluid decreases. The dissipation terms contain
derivatives of the eigenfunctions, and so we may estimate

JV

JI,R

∼ 1

γ̇ [Ro − R1]2
,

JY

JI,R

∼ 1

γ̇ 2[Ro − R1]2
,
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with γ̇ some representative scale for the rate of strain. Figure 8(b) plots (Ro −
R1) against B , over a range of Re2/Re1 that lies above the rigid rotation line,
Re2/Re1 = 1/η. For a small range of B close to zero, Ro − R1 = 1, and then (Ro − R1)
decreases with B . The rate of decrease at large B can be estimated as (Ro−R1) ∼ B−1/2.
Assuming this, we may estimate Re1,c for large B:

Re1,c ∼ B1−ν + B2−2ν, (4.9)

for 0.5 <ν < 1. Hence Re1,c(B) increases for large enough B , and the non-monotone
behaviour in Re1,c is explained. Probably the range of B over which Re1,c(B) decreases
is approximately that over which Ro − R1 = 1, although we have not tested this
hypothesis. Physically, over a small range of B , transfer of energy from the basic
flow to the perturbation is enhanced by an increase in the rate of strain of the basic
flow. As B increases further, the yielded fluid domain decays to zero, eliminating the
possibility for energy transfer.

5. Case I solutions – stability of co-rotating cylinders
For all the computed marginal stability results, we have found instability only

above the rigid rotation line, Re2/Re1 = 1/η, which marks where case I basic solutions
are found. For a rigid rotation, the linearization cannot be meaningfully carried out
(apart from in the critical case where the inner cylinder wall stress exactly matches
the yield stress). Although on physical grounds we must expect that rigid rotations
are stable to linear perturbations, we should like to provide a more rigorous proof.
We consider the real part of the linear energy equality (4.1):

λR‖u‖2 = Re1JI,R − JV − BJY . (5.1)

Applying the incompressibility condition, the Cauchy–Schwarz inequality and the
Poincaré inequality, Landry (2003) shows that conservative bounds for JI,R , JV and
JY are, respectively:

JI,R �
γ̇max

2

(
Ro

R1

)1/2

(Ro − R1)(k
2‖v‖2 + ‖w‖2), (5.2)

JV � min

{
1,

R1

Ro

π2

(Ro − R1)2

}
(k2‖v‖2 + ‖w‖2), (5.3)

JY �
1

γ̇max

min

{
1,

R1

Ro

π2

(Ro − R1)2

}
(k2‖v‖2 + ‖w‖2). (5.4)

Combining the bounds (5.2), (5.3) and (5.4), it follows that

λR‖u‖2

k2‖v‖2 + ‖w‖2
�

[
Re1γ̇max

2

(
Ro

R1

)1/2

(Ro − R1) −
(

1 +
B

γ̇max

)
C(Ro, R1)

]
,

where

C(Ro, R1) = min

{
1,

R1

Ro

π2

(Ro − R1)2

}
.

Evidently, as the rigid rotation line is approached, Ro → R1, thus C(Ro, R1) = 1, and
we have that λR < 0 provided that:

Re1 <
2B

(Ro − R1)γ̇ 2
max

(
R1

Ro

)1/2

→ ∞. (5.5)
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The various inequalities leading to (5.5) are of course not sharp, and as a
stability bound, (5.5) compares poorly to the computed results. However, (5.5)
demonstrates rigorously that the rigid rotation line, Re1 = ηRe2, is linearly stable
for all configurations. In fact, the bound (5.5) defines an envelope, below and above
Re1 = ηRe2. Finally, we comment also that the above approach is directly applicable
to non-axisymmetric perturbations. The additional inertial terms contribute only to
λI , whereas both JV and JY are increased.

5.1. An extended Rayleigh criterion

Close examination of the marginal stability curves that we have computed for
B > 0, indicates that the marginal stability curves lie considerably above the rigid
rotation line Re1 = ηRe2. For Newtonian fluids, not only is Re1 <ηRe2 stable to linear
axisymmetric disturbances, but also Re1 < Re2/η. The latter is Rayleigh’s criterion,
which was initially advanced heuristically for viscous flows by Rayleigh (1916), but
was later proved to be valid for linear axisymmetric flows by Synge (1938). In fact,
Rayleigh’s criterion is known to provide a good estimate of the marginal stability curve
for Newtonian fluids, when the cylinders are co-rotating and when both Reynolds
numbers are large. It is natural to ask whether the same is true for a yield stress fluid.

Rayleigh’s argument is based on the conservation of the circulation r̂ V̂ (r̂) in a
rotating inviscid flow with no azimuthal pressure gradient. For a steady rotation, the
consequence of this is that p̂ + ρ̂V̂ 2/2 does not vary with r̂ . It is then argued that
such flows will be stable only if exchange of the radial position of two rings of fluid
does not result in a net release of kinetic energy. In the case of a Bingham fluid, the
same heuristic reasoning may be applied to the basic flow. The following Rayleigh
criterion is straightforwardly developed for co-rotating cylinders, with V (r) > 0, above
the rigid rotation line.

Re2

Re1

�
B

2(1 − η)

[
ln

(
Ro

R1

)2

+
|τi |
B

(
R1

Ro

)2

− 1

]
=⇒ Stable. (5.6)

The physical interpretation is the same as for the Newtonian fluid.
In figure 9, we plot the bound from the extended Rayleigh criterion (5.6), against

our previously computed marginal stability results for various B at η =0.5 and
η =0.75. At large Rek , we see that the Newtonian curves converge rapidly to the
Rayleigh criterion. The marginal curves for B > 0 do not converge to the extended
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Figure 10. Variation with B of Re2/Re1 computed from the extended Rayleigh criterion
(5.6): (a) η = 0.5; (b) η = 0.75.

Rayleigh criterion (5.6). However, it appears that the slope of the marginal stability
curves at large Rek is close to that of the extended Rayleigh criterion. There appears
to be a constant offset that increases with B . The second observation is that for each
η, as B increases from zero, the critical slope Re2/Re1, predicted from (5.6), appears
to increase from the Newtonian value, η, towards the rigid rotation value, 1/η, as
B → ∞. We plot this ratio in figure 10.

These results hint at a straightforward extension of the Rayleigh criterion for
visco-plastic fluids. We may argue that the rotational flows will be unstable only if
an exchange of the radial position of two rings of fluid acts to release enough kinetic
energy to overcome the yield stress, i.e. we simply impose a threshold dependence on
B . As an intuitive physical interpretation this is perhaps useful, but since the marginal
stability curves are computed easily anyway, the practical and predictive value of such
an heuristic criterion is debatable.

Lastly, we have not attempted to prove that (5.6) provides a lower bound on
stability for linear axisymmetric disturbances, although this appears to be true for all
our results. The method of Synge (1938) relies on the simple format of V (r) for the
Newtonian flow, i.e. V (r) = ar +b/r . This allows formulation of two linearized energy
equations that can be subtracted to eliminate the inertial terms containing products
of u and v, and thence to an energy bound. Unfortunately the same method applied
here does not seem straightforward, since the velocity profile is more complex.

6. Case II solutions and the yielded narrow gap, as B → ∞
It is natural to ask what the marginal stability behaviour is at large B . Solving

the eigenvalue problem for large B , we find increasing values of Re1,c, but the
computations become progressively less well-conditioned. For large B , note that the
lines

Re2

Re1

=
1

η
± Bf (η),

fan progressively outwards to encompass the entire (Re2, Re1)-half-plane. Therefore,
for any fixed rotation rates and geometry, as the yield stress increases, eventually the
basic solution is a case II solution. It appears sensible to study these solutions more
closely.
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By focusing solely on those case II solutions for which τi < −B (i.e. dimensional
rotation rates for which Ω̂1 >Ω̂2 which is where instability is found), we may derive
the following expansions at large B:

|τi |
B

∼ 1 +
A0

B1/2
+

A2
0

3B
+

11A3
0

72B3/2
+ O(B−2), (6.1)

Ro(1 − η)

η
∼ 1 +

A0

2B1/2
+

A2
0

24B
+

A3
0

18B3/2
+ O(B−2), (6.2)

where

A0 = 2(1 − η)1/2

[
1

η
− Re2

Re1

]1/2

. (6.3)

Note that A0 is fixed on each ray, Re2/Re1 = constant, and, as B → ∞, the annular
gap of yielded fluid, Ro − η/(1 − η) ∼ B−1/2. Since the linear stability problem is posed
on the yielded layer only, it appears that at large B we should consider a narrow gap
problem on the thin yielded layer. In § 7, we will consider a second narrow gap limit,
namely η → 1 for fixed B , which is essentially the classical Taylor limit and leads to
a case I solution. However, for the study of the effects of large B , this second narrow
gap problem is of little relevance.

6.1. A similarity mapping for the case II stability problem

Before studying the effects of large B , we note that there exists a similarity mapping
for case II solutions. Observing the identical form of V (r) in the yielded region for
case II and case III solutions leads us to consider whether there exists a mapping
from every case II solution onto a case III solution. We see in § 6.1.1 that this is
indeed the case. This leads us to question whether there is also a mapping that maps
each case II stability problem to a corresponding case III stability problem, which we
answer affirmatively in § 6.1.2.

6.1.1. Case II basic solutions

We consider only case II solutions for which τi < −B , (a similar mapping may be
applied for τi > B). Mapping of the basic solutions consists of a simple re-scaling of
the length, i.e. we define

r∗ =
r

Ro − η/(1 − η)
,

and simply match the coefficients in (2.17). The velocity profile becomes:

V (r∗) =
Re∗

2(1 − η∗)

Re∗
1

r∗ +
τ ∗
i (η∗)2r∗

2

(
1 − 1

[r∗(1 − η∗)]2

)
− B∗r∗ ln

(
1

r∗(1 − η∗)

)
,

η∗

1 − η∗ � r∗ �
1

1 − η∗ , (6.4)

from which we deduce the following mappings:

η∗ =
η

Ro(1 − η)
, (6.5)

Re∗
2

Re∗
1

=
Re2

Re1

Ro(1 − η), (6.6)

B∗ = B[Ro − η/(1 − η)], (6.7)

τ ∗
i = τi[Ro − η/(1 − η)]. (6.8)
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The inner wall stress τ ∗
i is now determined from the condition that Ro is a yield

surface for the non-transformed solution, i.e.

τ ∗
i = τi[Ro − η/(1 − η)] = −B

(
R2

o(1 − η)

η2

)
[Ro − η/(1 − η)] = − B∗

(η∗)2
.

Therefore, we can write

V (r∗) =
Re∗

2(1 − η∗)

Re∗
1

r∗ − B∗r∗

2

[
1 − 1

[r∗(1 − η∗)]2
+ ln

(
1

[r∗(1 − η∗)]2

)]
.

Since V (r∗) = 1 at r∗ = η∗/(1 − η∗), we have:

1

η∗ =
Re∗

2

Re∗
1

− B∗

2(1 − η∗)

[
1 − 1

(η∗)2
+ ln

(
1

(η∗)2

)]
=

Re∗
2

Re∗
1

+ B∗f (η∗),

i.e. for the transformed solution, described in terms of (Re∗
2/Re∗

1, η
∗, B∗), we lie on the

boundary between case II and case III solutions. We may also observe that η∗ � η,
|Re∗

2|/Re∗
1 � |Re2|/Re1 and B∗ � B . We state the following proposition.

Proposition 1. For every case II solution with τi < −B , the velocity field V (r) is
equivalent to a case III velocity field V (r∗), where V (r∗) is the velocity field between a
pair of cylinders with a narrower annular gap. For the equivalent velocity field V (r∗),
the Bingham number and the absolute value of the Reynolds number ratio are reduced.
The transformed case III solution is that which attains the yield stress exactly at the
outer cylinder, i.e. it is a borderline case II–III solution.

Finally, we may eliminate Re∗
2/Re∗

1 from the basic solution, since we are concerned
only with the borderline case II–III solutions:

V (r∗) =
r∗(1 − η∗)

η∗ − B∗r∗

2(η∗)2

[
1 − (η∗)2

[r∗(1 − η∗)]2
+ (η∗)2 ln

(
(η∗)2

[r∗(1 − η∗)]2

)]
, (6.9)

6.1.2. Case II stability problems

To show that every case II stability problem maps to a marginal case II–III
stability problem, we re-scale all radial distances and the wavenumbers. The eigenvalue
problems are then identical, with the new definitions:

k∗ = k[Ro − η/(1 − η)], (6.10)

λ∗ = [Ro − η/(1 − η)]2λ, (6.11)

Re∗
1 = [Ro − η/(1 − η)]Re1, (6.12)

Re∗
2 = Re2Ro(1 − η)[Ro − η/(1 − η)]. (6.13)

This result is only possible because the boundary conditions at the yield surface are
identical and because the compatibility conditions are homogeneous and must be
satisfied on the boundary case II–III basic solutions. Clearly, the above mapping
preserves the stability characteristics of the eigenvalue problem since λ is simply
scaled.

Proposition 2. Not only does each case II basic solution map to a borderline case II–
III basic solution, but also the linear stability is preserved in this mapping. The parameter
space of the linear stability problem for case II solutions is therefore reduced by one
dimension. It suffices to solve the linear stability problem and find the marginal point
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superimposed.

along the line

Re∗
2

Re∗
1

=
1

η∗ − B∗f (η∗), (6.14)

for each (η∗, B∗). Since every marginal case II solution maps onto one such point, this
set describes all the marginal stability curves for all (Re1, Re2, η, B) that admit case II
solutions. The critical Reynolds numbers of the transformed problems, are smaller:
Re∗

k,c <Rek,c, k = 1, 2. The growth rate of an unstable disturbance is smaller for the
transformed problem and the wavenumbers of a disturbance are scaled with the width
of the yielded fluid region, Ro − η/(1 − η).

6.1.3. Examples

We verify the validity of the above transformation in figures 11 and 12, which
show the mapping for both the basic flow velocity profile and for the spectrum of an
eigenvalue problem, respectively. In figures 11(b) and 12(b), the velocity profiles and
spectra of the different mappings are superimposed upon one another.
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6.2. Marginal stability: Re∗
1,c(η

∗, B∗)

The similarity mapping of § § 6.1.1 and 6.1.2 provides an efficient method of computing
the marginal stability values. For each (η∗, B∗) we fix the ratio Re∗

2/Re∗
1 according

to (6.14), which defines V (r∗) and then solve the eigenvalue problem in the starred
variables. This defines Re∗

1,c(η
∗, B∗), which is the critical value of Re∗

1, computed along
the ray Re∗

2/Re∗
1 = fixed, defined by (6.14). Some examples are shown in figure 13.

We can see that Re∗
1,c(η

∗, B∗) increases both for large and small B∗. At small
B∗, the line separating case II and III basic solutions approaches the rigid rotation
line, and hence Re∗

1,c(η
∗, B∗) grows. For large B∗, the line separating case II and III

basic solutions approaches the Re∗
2-axis, and at the same time we can seen that for

counter-rotating cylinders the marginal stability curves are nested above one another
as B increases. Since the Reynolds numbers are reduced in the transformed problem,
the computation is slightly better conditioned.

6.3. The narrow gap limit of large B

As discussed, when B → ∞ any basic solution at fixed (Re2/Re1, η) becomes a case II
solution. Equation (6.2) gives the asymptotic rate of decay of Ro → η/(1 − η), as
B → ∞. Furthermore, under the similarity transform discussed in § 6.1, for each case II
basic solution the stability problem is equivalent to that of a borderline case II–III
basic solution. We may therefore investigate the limit B → ∞ via its effect on the
transformed problems.

For large B we see that η∗ → 1, B∗ → ∞ and k∗ → 0, according to:

1 − η∗ ∼ A0

2B1/2
− 5A2

0

24B
+ O

(
B−3/2

)
, (6.15)

B∗ ∼ B1/2 R1A0

2

[
1 +

A0

12B1/2
+

A2
0

9B
+ O

(
B−3/2

)]
, (6.16)

k∗ ∼ k
R1A0

2B1/2

[
1 +

A0

12B1/2
+

A2
0

9B
+ O

(
B−3/2

)]
, (6.17)

where R1 = η/(1 − η). We write

r∗ =
η∗

1 − η∗ + ξ,
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substitute into (6.9) and derive the leading-order expansion for the basic velocity as
B → ∞:

V (r∗) ∼ 1 − R1A
2
0

4
[2ξ − ξ 2] + O

(
B−1/2

)
. (6.18)

Similarly, we derive:

dV (r∗)

dr∗ ∼ −R1A
2
0

2
(1 − ξ ) + O

(
B−1/2

)
, (6.19)∣∣∣∣dV (r∗)

dr∗ − V (r∗)

r∗

∣∣∣∣ ∼ R1A
2
0

2
(1 − ξ ) + O

(
B−1/2

)
, (6.20)

where in (6.20) the higher-order terms also vanish as ξ → 1.
We now transform the eigensystem (3.19) to the ξ variable and take the limit

B → ∞. To retain coupling through the inertial terms, we define:

ũ = u, ṽ
B

k

[
2

R1A
2
0

]1/2

= v, (6.21)

λ̃ = λ∗, R̃e1 =
Re∗

1k

B

[
R1A

2
0

2

]3/2

. (6.22)

Our leading-order eigensystem is:

D2
ξ

[
D2

ξ ũ

1 − ξ

]
− R̃e1

(
1 − R1A

2
0

4
[2ξ − ξ 2]

)
ṽ = 0, (6.23)

D2
ξ ṽ + R̃e1(1 − ξ )ũ = λ̃ṽ, (6.24)

where Dξ = d/dξ . Boundary conditions are:

ũ = Dξ ũ = ṽ = 0 at ξ = 0, (6.25)

ũ = Dξ ũ = ṽ = 0 at ξ = 1, (6.26)

plus the various compatibility conditions at ξ = 1, to remove the singularity.
This eigensystem is degenerate, and requires some form of regularization to solve

numerically. However, we may proceed to bound λ̃R , using an energy method.
Denoting α =R1A

2
0/4, we multiply (6.23) by ū, (6.24) by αv̄, integrate over [0, 1]

and retain only the real part, to give:

αλ̃R

∫ 1

0

|ṽ|2dξ = −α

∫ 1

0

|Dṽ|2dξ −
∫ 1

0

|D2ũ|2
1 − ξ

dξ

+ R̃e1

∫ 1

0

(
1 + α[1 − 3ξ + ξ 2]

)
(ṽRũR + ṽI ũI ) dξ. (6.27)

Using the Poincaré and Cauchy-Schwarz inequalities, we bound as follows:

αλ̃R||ṽ||2 � −π2(α||ṽ||2 + π2||ũ||2) +
R̃e1(1 + α)

2

(√
α

π
||ṽ||2 +

π√
α

||ũ||2
)

� −
(

π2 − R̃e1(1 + α)

2π
√

α

)(
||ṽ||2 +

π2

α
||ũ||2

)
, (6.28)

and therefore λ̃R � 0, provided that:

R̃e1 �
2π3

√
α

1 + α
. (6.29)
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Figure 14. Stationary outer cylinder: (a) marginal stability curves Re∗
1,c vs. B∗, dashed line

is Re∗
1 = 24(B∗)1.5; (b) wavenumbers k∗

c at critical Re∗
1,c , plotted against B∗, dashed line is

k∗
c = 6(B∗)−0.25.

In terms of the starred and unstarred variables, as B → ∞, this approximate stability
limit is:

Re∗
1k

∗ �
2π3B∗

α(1 + α)
, (6.30)

Re1k �
2π3A0B

3/2

α2(1 + α)
. (6.31)

Below, we shall consider how good these estimates are.

6.4. Stationary outer cylinder: Re2 = Re∗
2 = 0

It is not sensible to compute marginal stability results for all values of Re∗
2/Re∗

1.
The case when the outer cylinder is fixed, Re2 = Re∗

2 = 0, is, however, of particular
practical interest. For example, rotational shear is often used to thin industrial fluids
(food products during processing), and similar geometries are found in oil drilling
operations. We note that if Re∗

2/Re∗
1 = 0, then B∗ and η∗ are related by:

B∗ =
1

η∗f (η∗)
. (6.32)

The marginal stability values Re∗
1,c are computed as before. These are shown in

figure 14(a), together with the critical wavenumbers k∗
c , that give maximal growth at

critical Re∗
1,c. For large B∗, the asymptotic behaviour of both Re∗

1,c and k∗
c appears to

be:

Re∗
1,c ∼ (B∗)1.5, k∗

c ∼ (B∗)−0.25.

In terms of the unstarred variables, this is:

Re1,c ∼ B1.25, kc ∼ (B)0.375. (6.33)

Figure 15 plots the energy estimate stability limits (6.30) and (6.31) against the
data from figure 14. We can see that (6.30) and (6.31) are fairly conservative in
absolute terms. At fixed η and Re2/Re1, (6.31) implies that kcRe1,c grows at least
as fast as B1.5 as B → ∞, whereas from our computed data we have kcRe1,c ∼ B1.625.
Similarly, Re∗

1k
∗ ∼ (B∗)1.25 in our computed results, compared to (6.30). Thus, the

actual estimates of the exponents are not overly conservative.
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6.4.1. Order of magnitude estimate

We remark that the estimate Re1,c ∼ B1.25 can also be derived from a simple order
of magnitude analysis. Consider the flow between the two cylinders, with stationary
outer cylinder in the limit that the yield surface approaches the inner cylinder wall.
Suppose that we have a small fluid particle of dimension â that is moving radially
outwards with speed ûp . In the absence of any increase in momentum, the particle
will decelerate owing to visco-plastic frictional drag from the surrounding fluid. This
balance is approximately:

ρ̂â3 dûp

dt̂
∼ −µ̂pûpâ − τ̂y â

2.

Assuming that the yield stress term is dominant, the time scale over which the motion
decays is

δt̂ ∼ ρ̂âûp

τ̂y

,

and over this time interval the particle moves a distance δr̂ ∼ ûpδt̂ .
In moving a distance δr̂ , the particle may gain momentum from the gradient in the

centrifugal force field of the basic flow. This gain is approximately

ρ̂â3 d

dr̂

[
V̂ 2(r̂)

r̂

]
× δr̂ ∼

ρ̂2û2
pâ4R̂1Ω̂

2
1

τ̂y(R̂o − R̂1)
,

where R̂o is the dimensional version of Ro, i.e. here is the outer wall of the yielded
region. In order for the motion to be sustained, we expect that the gain in momentum
from the centrifugal force field gradient at least balances that lost to visco-plastic
frictional forces. This balance is captured by:

ρ̂2û2
pâ4R̂1Ω̂

2
1

τ̂y(R̂o − R̂1)
� µ̂pûpâ + τ̂y â

2.

Dividing throughout by the viscous drag, we have:

ρ̂2ûpâ3R̂1Ω̂
2
1

τ̂yµ̂p(R̂o − R̂1)
� 1 +

τ̂y â

µ̂pûp

.
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The second term on the right-hand side above is effectively a Bingham number, and
we consider that this term is much larger than unity as the yield surface approaches
the inner cylinder. Neglecting therefore the viscous term, we scale â with the yielded
gap width (R̂o − R̂1) and ûp with R̂1Ω̂1. After simplifying, this results in the following:

ρ̂2(R̂o − R̂1)
3R̂1Ω̂

2
1

µ̂2
p

�

[
τ̂y(R̂o − R̂1)

µ̂pR̂1Ω̂1

]2

.

In terms of our dimensionless variables, this balance is exactly:

Re1 � B

[
R1

Ro − R1

]1/2

.

As B → ∞, (Ro − R1) ∼ B−1/2, and hence the instability requires Re1 � B1.25.

7. Case III solutions and Graebel’s narrow gap limit
The second narrow gap limit we can consider is that when Re2/Re1 and B remain

fixed as η → 1. Whereas the narrow gap limit considered above in § 6.3 arises because
of an increasing yield stress and consequent growth of the unyielded layer on the
outer wall, this limit is purely geometrical. The limit is realized when the radii of the
two cylinders become large, whilst maintaining a fixed gap between them. To maintain
a Reynolds number ratio Re2/Re1 = 1 − β implies that Ω̂2/Ω̂1 ∝ η−2(1 − β), whereas
maintaining constant B implies that τ̂y/µ̂p increases as R̂1/(R̂2 − R̂1) = η/(1−η) → ∞.
Considering the plastic viscosity to be fixed, we see that this limit physically implies
that τ̂y → ∞. However, unlike § 6.3 where B → ∞ can also imply that τ̂y → ∞, here we
have a distinguished limit. Although our notation is slightly different, this is the same
distinguished limit that is evaluated by Graebel (1964). Since there is no physical
reason to expect that the yield stress should increase directly proportional to the
inner cylinder radius, this narrow gap limit is less applicable than that in § 6.3.

We may see from figure 13(b) that f (η) → 0 in the limit that η → 1, and hence if

Re2

Re1

< 1, B fixed, (7.1)

then as η → 1, the basic solution for the stability problem will be a case III solution,
i.e. yielded across the gap. We therefore restrict our study to case III solutions with
τi < − B/η2, since it is these that have been found to be unstable. For these we can
find τi directly and the basic velocity is:

V (r) =
Re2

Re1

[
(1 − η)r − η2r

1 + η

(
1

r2(1 − η)2
− 1

)]
+

ηr

1 + η

(
1

r2(1 − η)2
− 1

)

+
Bη2r

1 − η2

(
1

r2(1 − η)2
− 1

)
ln(1/η) − Br ln(1/[r(1 − η)]). (7.2)

Writing δ =(1 − η), we find to leading order:

V (r)

r
∼ δ

[
Re2

Re1

(
1

2
+ ζ

)
+ 1

2
− ζ

]
+ O(δ2), (7.3)

dV

dr
∼

[
Re2

Re1

− 1

]
(1 − δζ ) + 2Bδζ + O(δ2), (7.4)

∣∣∣∣dV

dr
− V (r)

r

∣∣∣∣ ∼
[
1 − Re2

Re1

]
+ O(δ), (7.5)
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where ζ ∈ [−1/2, 1/2] is defined by:

r =
1 + η

2(1 − η)
+ ζ.

We substitute these expressions into our eigensystem, take the limit as δ → 0 and
retain only the leading-order terms. We have the following leading-order system:[

1 +
B

β

][
D2

ζ − k2
]2

ǔ − Ře1(2 − β[1 + 2ζ ])k2v̌ = λ
[
D2

ζ − k2
]
ǔ, (7.6)

[
D2

ζ − k2
]
v̌ − Bk2

β
v̌ + βŘe1ǔ = λv̌, (7.7)

where Dζ = d/dζ , where

ǔ = u, v̌ = vδ1/2,

β = 1 − Re2

Re1

> 0, Ře1 = δ1/2Re1,

and where boundary conditions are:

ũ = Dζ ũ = ṽ = 0 at ζ ± 1/2. (7.8)

Since the effects of large yield stress on stability are represented better by our analysis
of case II solutions, we have not invested much effort in solving the above system
numerically. The reader may consult Graebel (1964) for an analytical approximation
(taking a mean value of the inertial terms), and explicit marginal stability curves.
However, there are some differences in notation.

An energy estimate is straightforward to derive. Multiplying (7.6) by ¯̌u, (7.7) by
k2¯̌v, integrating over [−1/2, 1/2] and summing the real part of the two equations,
with liberal use of the Poincaré and Cauchy–Schwarz inequalities, we may derive the
estimate:

λR �
Ře1[1 + β/2] − [k2(1 + B/β) + π2]

1 +
‖Dζ ǔ‖2

k2[‖ǔ‖2 + ‖v̌‖2]

. (7.9)

Therefore, we expect that the flow will be stable in the limit η → 1, provided that:

Re1 �
[k2(1 + B/β) + π2]

(1 − η)1/2[1 + β/2]
. (7.10)

In this estimate, we note that Re1 increases with B/β . For sufficiently short
wavelengths, B/β essentially just augments the viscosity. This result is in qualitative
agreement with Graebel’s results.

8. Summary and conclusions
We have presented a range of different results concerning axisymmetric linear

perturbations of a Couette flow of a Bingham fluid. Those results presented for
counter-rotating cylinders are not surprising, in that they show a steady increase in
critical Reynolds number with Bingham number, which confirms the intuitive notion
that the yield stress acts to make the fluid behave as if it were simply a more viscous
fluid. For co-rotating cylinders this intuition is false, as has been shown independently
by Landry (2003) and by Peng & Zhu (2004), i.e. increasing the yield stress can result
in a less stable flow.
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We have investigated and explained this strange behaviour in § 4.1. There is in fact
an O(1) range of B over which Re1,c first decreases and then increases. This effect is
more observable for smaller radius ratios. For sufficiently small B , the fluid remains
unyielded throughout the annulus. Examination of the linear energy equation has
shown that λR is destabilized only by the inertial terms, which transfer energy from
the basic flow. The basic flow rate of strain γ̇ (U) amplifies the quadratic product
of radial and azimuthal velocities in the inertial term. In the co-rotating cylinder
regime, we observe that γ̇ (U) in fact increases with B close to the inner cylinder.
Conversely, γ̇ (U) divides quadratic products of the perturbation velocities in the yield
stress dissipation functional. Thus, for small B we have shown that it is possible for
the destabilizing inertial terms to grow with B while the dissipative terms do not.
This explains the interesting effect of Landry (2003) and Peng & Zhu (2004).

Eventually, unyielded fluid layers appear at the outer cylinder and move
progressively inwards, which results in dominance of the dissipative terms. We have
investigated this effect analytically via a narrow gap approximation and shown that
Re1,ckc � B1.5 as B → ∞. This compares well with our computed results at large B

for a stationary outer cylinder: Re1,c ∼ B1.25 and kc ∼ B0.375. We have also shown
how Re1,c ∼ B1.25 can be deduced from a simple order of magnitude analysis, for a
stationary outer cylinder.

We have also briefly considered the second (classical) narrow gap limit in which the
radius ratio η, approaches unity, for fixed B and Reynolds number ratio. We have
shown that Re1,c � (k2[1 + O(B)] + π2)/(1 − η)1/2 in this limit. Thus, for this limit
the principal influence of B is to augment the viscosity, i.e. to stabilize. This limit
corresponds to the narrow gap limit considered by Graebel (1964), and we concur
with his analysis that B is stabilizing. There is no contradiction with the results of
Landry (2003) and Peng & Zhu (2004), since the non-monotonicity of Re1,c is observed
for smaller radius ratio cylinders, i.e. away from Graebel’s η → 1 limit. Furthermore,
in comparison with the narrow gap limit in § 6.3, Graebel’s distinguished limit η → 1
for B fixed is of limited practical use. Graebel’s limit implies that the yield stress
increases in direct proportion to R̂1/(R̂2 − R̂1), whereas the limit in § 6.3 is purely a
large yield stress limit.

An interesting feature of this stability problem is that for the case II base solutions,
(which incorporates all solutions as B → ∞), there exists a similarity mapping of both
the base solution and stability problem. This mapping of the stability problem, onto
an equivalent problem with an outer cylinder of radius exactly equal to the yield
surface radius, is possible only because the boundary and compatibility conditions
are homogeneous. Such mappings are in fact common for linear stability studies of
yield stress fluids (see e.g. Frigaard et al. 1994; Frigaard 2001), and result from the
linear stability problem being defined only on the yielded region of the flow. Although
mathematically equivalent, physically, the transformed problems are not equivalent. In
particular, the non-transformed problem does allow a yield surface perturbation. As is
common in these problems, the yield surface perturbation decouples from computation
of the velocity and pressure perturbations, and plays no role in determining stability.

A natural question, not raised before, is whether or not vortical instabilities will in
fact be observable where predicted by the linear analysis. In the case where there is
no unyielded fluid, we should expect that vortices can be found. For case II solutions,
however, we doubt that the mathematical prediction will be realized in practice. The
linear analysis suggests that a vortical structure will grow, bounded on the outside
by an unyielded plug region. Whereas robustly stable static unyielded regions can be
found bounding outer walls in shear flows (see e.g. Allouche, Frigaard & Sona 2000;
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Frigaard, Scherzer & Sona 2001; Frigaard, Leimgruber & Scherzer 2002) here the
‘interface stress’, between the static region and the yielded region will be at exactly
the yield value. As the linear perturbation grows to some saturation amplitude, it is
unlikely that the velocity and shear stress perturbations will vanish at exactly the
unperturbed yield surface position. Indeed, the vortical structure implies a repeating
vertical array of: upwards shear flow, suction, downwards shear flow and impinging
jet, all bounding a marginally static yield surface. It is likely that some form of erosion
of the plug region will occur, and potentially this can delay transition. This, however,
requires further investigation with computational and/or experimental methods.

This work has been partly funded by the BC Advanced Systems Institute and by
Metso Corporation. We are grateful for this financial support.
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